Reiner Grundmann
Climate change is an important topic for society but it seems that social scientists could do a better job in addressing it.
Let me explain. Saying that climate change is important for society
means that it is a social problem. However, it tends to be treated as a
problem for climate science, and a problem of communication of the
‘correct’ understanding of the problem. Saying that social scientists
could do a better job in addressing it implies that there are some
shortcomings. And it raises the question what addressing the problem
could mean.
Recently I published a
comment in Nature Geoscience, arguing that climate change is a wicked social problem. Developed in
urban policy,
the term ‘wicked problem’ denotes ‘[t]he kinds of problems that
planners deal with–societal problems–are inherently different from the
problems that scientists and perhaps some classes of engineers deal
with. Planning problems are inherently wicked.’
Social problems are never solved. At best they are only re-solved — over and over again. They can be managed better or worse.
Examples
of ‘tame’ or ‘benign’ problems are: solving an equation; analyzing the
structure of some unknown chemical substance; or attempting checkmate in
five moves. In each case we know if we have succeeded or not. Examples
of wicked problems are: crime, drug use, poverty, health provision,
employment, education, and so on. Success criteria are inherently
political, and subject to change. It is not realistic to imagine a zero
rate of crime as a feasible policy goal. Policy makers know this, as
does the public at large. There are no big scientific assessments, let
alone a scientific consensus needed to advise policy. Steps are taken
incrementally, and pragmatically. Evidence does play a role, but so do
cultural values. What works in one place might be inspiration for
others, but no guarantee that it works there as well.
In climate change assessments the main social science discipline is
economics. Others are under-represented. This may have to do with the
obvious expertise of economists in delivering cost benefit analyses for
all kind of policy proposals and a preference for models and numeric
indicators, much like climate scientists. But this under representation
may also be the result of a self-imposed restraint from the other social
sciences outside orthodox economics. Analyzing climate change as a
social construct does not seem right when the political right in the USA
and elsewhere has got its teeth into it. Besides, many left leaning
social scientists hope for a decisive government intervention which they
believe is more likely if based on a strong scientific consensus. No
matter what qualms one might have with science elsewhere (GMOs, big
pharma, badger culls…) in climate change science seems to help a
progressive cause. But such quiescent politics is bad professionally,
and it is counter-productive politically. The social sciences need to do
a better job.
Can society solve the problem of climate change? Which indicators,
metrics or observations would tell us that we have succeeded, or failed?
Much depends on how we define climate change, and how we define climate
policy. As has been
noted long ago,
but little noticed in the scholarly community, there are two radically
different definitions of climate change, provided by two authoritative
international organizations in charge of the problem. The
United Nations Framework Convention on Climate Change
(UNFCCC) defines climate change as “a change of climate that is
attributed directly or indirectly to human activity, that alters the
composition of the global atmosphere, and that is in addition to natural
climate variability over comparable time periods.” By contrast, the
Intergovernmental Panel on Climate Change
(IPCC) defines climate change broadly as “any change in climate over
time whether due to natural variability or as a result of human
activity.”
If one were to adopt the UNFCCC definition, it would seem that only
anthropogenic factors should be taken into account, with natural drivers
of climate change being left out. There are three problems with this
approach. First, it would limit our interventions (climate policies) to a
narrowly defined set of variables, and prioritize mitigation over
adaptation. Many commentators and participants in the climate change
discourse essentially transform the problem of climate change into a
problem of low carbon energy provision. Climate policy becomes energy
policy. Second, it neglects the ultra-complex interconnections between
variables in the climate system which means that one intervention at one
point in time (or over a period of time) may have unintended and
unforeseen consequences in another part of the system. The social world
is part of this interconnected system and people’s needs and desires may
run counter to some of the interventions. Third, separating the
anthropogenic from the natural drivers of climate change leads into
absurd policy consequences. Nevertheless,
it has been discussed, for example, how to allocate aid to developing countries on the basis of such a
calculus.
If we take the IPCC definition of climate change, “any change in
climate over time whether due to natural variability or as a result of
human activity”, we realize how difficult it is to ‘address’ the issue
as such, and that it may well be impossible to go about ‘solving’ it.
This conclusion from the literature of wicked problems, as applied to
climate change, has led to animated debates (see for example,
here,
here, and
here). Commentators
(mostly from the natural sciences) interpreted this as defeatism, as
giving up on the problem, as antagonizing the science community, or as
alienating the climate negotiators. In fact, nothing of the sort follows
from my argument and many comments of my Nature piece were
misunderstandings, some genuine, some based on motivated reasoning or
arrogant dismissal.
If we take a step back and consider other social problems, we should
be able to see the important feature that they have in common with
climate change. Consider unemployment. Governments are concerned if the
rate of unemployment is rising, or stays high. All kinds of social
problems seem to follow, from rising crime, drug use, suicides to the
boost for right wing parties. Economic growth and government policies
are seen as the appropriate tools to keep unemployment at bay. Much
debate occurs about the appropriate tools and the attribution of
responsibility. History tells us that only under exceptional
circumstances will unemployment be reduced to (near-)zero. What counts
as success in addressing the problem is always contested. And, not to
forget, impression management is important. We have ample experience
with the definition of unemployment
in several advanced economies.
Climate change has many similarities to this example. Yet, it was
never defined in these terms but as a problem with a unique solution,
which was provided by science. This could happen because climate change
entered the stage of world politics after successful policies to protect
the ozone layer were being implemented. Hence, historical path
dependency has led many to believe climate change is like ozone
protection, that the Kyoto Protocol should imitate the Montreal
Protocol, and the lessons learnt from ozone should be taken on board for
climate. What were these lessons?
The
role of science was seen as the
driving force behind the
success in Montreal.
An important reason was thought to be the unified assessments under the
umbrella of WMO and UNEP. The reports were meant to ‘speak truth to
power’. More importantly, it was widely believed that a scientific
consensus would translate into political consensus. Getting the science
right was seen a precondition for good policy. Not only that: warning of
the consequences of inaction was part of the scientific message and
believed to be essential for motivating decision makers to take
appropriate action. However, the Montreal Protocol was not based on a
science consensus, and not driven by atmospheric science. It was driven
by a change in interest constellations across major actors in the policy
domain (the European Community, the USA, and CFC manufacturers).
Influential narratives about the genesis of the Montreal Protocol
maintain that not only was the process science driven, but that there
was a
scientific consensus that led to the political agreement.
Unified scientific assessments
conducted under the auspices of WMO-UNEP were allegedly instrumental in
this regard. However, a somewhat closer look reveals that ozone
depletion as a scientific issue is still an active field of research,
and, more importantly, that before the Montreal Protocol no such
consensus existed. The process was driven by changing political
constellations (mainly a U-turn of big chemical companies and the
European Community), accompanied by a hot crisis signal (the phenomenon
called the ‘ozone hole’, for details, see
here.)
Following the example of unified assessments, the IPCC started
producing state of the art assessments every five years or so, beginning
in 1988. Again, the hope was that a scientific consensus could be
achieved which would translate into a political consensus. The science
relied in both cases on models, observations, and other data, especially
using information that could be used as alarm signals that would
galvanize the policy world. This was based on the experience of the
ozone layer where factual crisis signals entered the policy domain at a
critical juncture (just before decisive negotiations in Montreal).
Some commentators and activists suggest that the scientific
consensus is instrumental for good climate policy. Lack of political progress is thus attributed to
misinformation about ‘the science’, or
unawareness of the scientific consensus. Skeptical voices are blamed for this state of affairs, and the allegedly
‘balanced reporting’ by the mass media which gives too much room to skeptical voices–but more
recent research suggests
their visibility pales in comparison to the mainstream. However, a
focus on winning a media war is risky business. If climate policy is
justified with science, opponents of the policy will attack the science.
Instead of discussions about climate policy we tend to get discussions
about the veracity of anthropogenic global warming.
Another important principle that was developed in relation to ozone
was the idea that the science could identify global targets and
timetables. These principles were introduced into a policy framework
that
has been described
as a ‘global managerial approach’. Abatement strategies were
formulated, trying to get binding agreements on targets and timetables.
In ozone, industry resisted this approach for a long time, arguing that
these goals were not feasible. Over time, this claim proved wrong.
Industry was able to over fulfil the seemingly ambitious plans. Hopes
were raised to repeat the same feature in climate policy.
Hopes were similar with regard to the modest reduction targets
established in 1997 in Kyoto (5% on average). But in climate policy, the
global approach based on targets and timetables ran into deep problems.
Greenhouse gases are tightly linked to economic activity and
infrastructures of cities, industries, and agriculture. Aggressive
reduction policies have negative economic impacts which explain the
reluctance of all governments in this regard. When they come together at
climate negotiations they all prefer others to do something so they can
continue their business as usual. Despite all the grandstanding by
politicians to ‘redouble our efforts at saving the planet’, all
governments in the global negotiations want a free ride, and sell it at
home as the best deal available to tackle climate change.
Many countries have adopted various measures to claim GHG emission
reductions leading to a very complex picture of relative competitive
advantage. Using appropriate metrics, most countries can make the case
that they have contributed to emission reductions. They have either
reduced emissions (often by exporting them), avoided emissions (as
through China’s one child policy), or emitted much less CO2 per capita
than the global average (as is the case in many developing countries).
This pattern has led countries into a deadlock at the international
negotiations.
In the case of climate change another level of complexity is added
through the existence of sinks for GHGs. In ozone such sinks had been
hypothesized but ultimately the only significant sink proved to be
photolysis of CFCs in the upper stratosphere, where ozone is destroyed
as a result. In climate two much discussed sinks are reforestation and
ocean fertilization. Reforestation has been part of the UNFCCC process
since 2003,
leading to controversies. Some argue the incentive to reforestation has perverse effects, leading to deforestation in the first instance. An
FAO report claims
that ‘[s]ome 40 to 50 percent of plantations in the Asia-Pacific have
been established by clearing natural forests, rather than by using
degraded or abandoned lands.’ Ocean fertilization is a technology
forming part of a
geoengineering solution, another hotly
contested prospect.
As the above makes clear, all eyes are on mitigation strategies, with
some attention to remediation (geo-engineering). Adaptation had been an
afterthought in ozone, and has remained so in the case of climate.
Again the path dependent nature of climate policy might be able to
explain this. In the run-up to the Montreal negotiations US interior
secretary Hodel argued against signing an international agreement on
CFCs. Instead he proposed a ‘personal protection plan’. The Washington
Post carried the headline: ‘Administration Ozone Policy may Favor
Sunglasses, Hats’. The Wall Street Journal titled: ‘Advice on Ozone May
Be: Wear Hats and Stand in the Shade’. Hodel was quoted in the following
words: ‘People who don’t stand out in the sun–it doesn’t affect them’
(see
Grundmann 2001).
This was proposed as an alternative to regulating CFCs. Apparently the
proposal was leaked in order to ridicule Hodel, and the proposal never
was taken seriously.
Critics of Hodel pointed out that we need to act before it is too
late. The strategy which has a main focus on mitigation prevailed and
was enshrined in the Montreal treaty. However, it was not a real
prospect to avoid ozone depletion. This was already occurring as a
result of previously accumulated emissions, given their long lifetime (a
feature ODS share with many GHGs, especially CO2). Being prudent in the
sunshine has become good public health advice across the globe. We see
this juxtaposition of mitigation versus adaptation in the climate case
as well. It has led to the near absence of adaptation in the public
discourse on climate, and in priorities of climate policy. Scientists
and decision makers often frame the problem in terms as if climate
change could be prevented. Based on past and current emissions we are
committed to climate change; it is in the pipeline so to speak.
Neglecting adaptation is bad public policy.
Nevertheless, adaptation is still seen by some as giving in to the
climate change skeptics. On the contrary, it is a consequence of the
UNFCCC definition of climate change. A good climate policy will protect
communities from the consequences of climate change, no matter if caused
by nature or humans. We don’t need to know if a hurricane or flooding
was man-made in order to protect ourselves.
Treating ozone and climate with the same principles when it comes to
policy making raises even more important questions. These have to do
with the dominance of climate science and climate scientists in the
policy debate, disregarding professional expertise in the social and
policy sciences. After all, the assumption that climate change could be
solved applying the same principles seems to rest on the assumption that
both cases belong to the same class of problems. However, this
assumption was never examined or questioned (exceptions can be found in
the work of
Prins and Rayner and
Rayner and Caine).
Tame problems, such as the ozone case, do have stopping rules. We
know at which point we have succeeded, there is a list of agreed-upon
solutions. Going back to pre-industrial levels of chlorine loading of
the atmosphere was the obvious target in ozone policy, and the success
can be measured against this baseline. Ceasing production of ozone
depleting substances is the only tool needed in this effort. There is a
technical solution that could be identified scientifically, and
implemented via a global treaty and ensuing national implementation.
Still, the problem was not easy, and a political controversy engulfed
the scientific debate, with several countries aligned in different
camps. Business refused CFC controls for a long time as a matter of
principle, as it did not want to accept regulations based on ‘scientific
hypotheses’.
Climate change does not have such a stopping rule. We do not know if,
and when we have succeeded solving the problem. Various metrics have
been suggested to measure and monitor progress, or to establish success
criteria: CO2 concentrations in the atmosphere, remaining carbon
budgets, global average warming of surface temperatures, or
heat content in the oceans. The timeframes for these targets vary by decades. What a safe limit is depends on who you ask, as
Fred Pearce put it.
There is no lack of suggested practical solutions either. They
include rolling out nuclear power plants across the globe; switching all
energy supply to solar, wind or biofuels; transforming our lifestyles;
taxing carbon with low or high rates; implementing emission trading
systems; developing geo-engineering projects; adopting vegetarian or
vegan diets and lifestyles; or abolishing capitalism. Advocates of these
proposals quote the scientific consensus about the reality of
anthropogenic climate change and the need for decarbonization of the
economy. But climate science does not help us choosing between these
options. These solutions, if implemented, would lead to radically
different social realities. Some of these solutions might lead to more
catastrophic changes than global warming itself; the
remedy could be worse than the disease.
After years of unsuccessful climate negotiations trying to mimic the
top down, target and timetable approach, the COP 21 in Paris 2015 took a
different approach. For the first time in decades the proposition
became acceptable to follow a bottom up approach, and to listen to what
nation states put on the table as realistic goals (so-called ‘pledges’).
This approach, which dates back to a UN meeting in Bali in 2007 where
Nationally Appropriate Mitigation Actions (NAMAs)
were proposed,
was long seen as inadequate and shying away from the real tasks. It is
therefore a positive sign when the international community takes a fresh
approach, taking stock of the unsuccessful previous top down attempts.
However, the problem still remains how these pledges can be implemented
in each country, and how effective they are in staying within the goal
of limiting global average temperature increase to
below 2 degrees.
The fact that COP21 was able to turn a fresh page (despite some
justified skepticism about the feasibility of the pledges to achieve
warming limits) indicates that
path dependent processes can be
unlocked under certain conditions.
This process needs to continue. The issue of adaptation needs a massive
boost on the political agenda; and the demand for social science
expertise needs to match the science and modelling expertise in the IPCC
and other forms of policy advice. After all, the work of climate
science has been done to a large degree. We now need to realize that
climate change is also, and perhaps first of all, a
social, economic, and political issue. It is high time the
expertise of relevant communities is recognized and assembled.
Ozone depletion is a tame problem that can be tackled through an
engineering logic. The problem could be described and decomposed into
smaller parts, targets could be identified and solutions could be
suggested. The success criteria were given by the clear distinction
between a world before and after CFC emissions.
Climate change has been forced into the same logic but escapes it.
Climate Change is a wicked problem, like other social problems. It is
not amenable to a global managerial solution with an engineering logic
applied to it. Such a logic diverts our attention away from what matters
with regard to climate change in society. Not everyone agrees that
climate policy can or should be reduced to energy policy. As
Sheila Jasanoff has argued,
‘there is a need for “technologies of humility” to complement the
predictive approaches: to make apparent the possibility of unforeseen
consequences; to make explicit the normative that lurks within the
technical; and to acknowledge from the start the need for plural
viewpoints and collective learning.’
By adopting questionable lessons from the ozone case and applying
them to climate, we have for a long time reinforced a process that was
counterproductive. One could say that, ironically, the success of ozone
protection has led to problems in climate change policy. In order to
overcome these problems, new approaches are needed. The breakaway from
top down, global managerial approaches is a first step. This needs to be
followed by other steps, by recognizing adaptation as a policy
priority, by listening to social science expertise, and by taking
pragmatic steps in dealing with the climate problem. This requires the
attention of social scientists who should study climate change as a
social problem.
Reiner Grundmann
is Professor of Science and Technology Studies at the University of
Nottingham. His main research interest is the relation between knowledge
and decision making. In recent years he has been studying the public
discourse on climate change where the role of scientific experts, lay
audiences, decision makers and the mass media are crucially important.